Важная информация

АВАРИЙНОСТЬ НА ДОРОГАХ РОССИИ

За прошедший год в России произошло 199 431 ДТП, что на 2,1% меньше, по сравнению с предыдущим годом. В них погибло 26 567 (-3,9%) человек, а 250 635 (-1,9%) человек получили ранения различной тяжести.

11845 (-3,9%) ДТП произошли по вине водителей, находившихся за рулем в состоянии алкогольного или наркотического опьянения. В результате этих ДТП 1 954 (-15,4%) человека погибли, а 17 280 (-4,6%) человек получили ранения.


Исследование вероятности возникновения неисправностей и состава работ по текущему ремонту

Для оценки математического ожидания возникновения неисправности служит доверительный интервал, показывающий наибольшую и наименьшую вероятность возникновения той или иной неисправности:

,

где Р1 и Р2 – верхняя и нижняя границы интервала, определяемые по формуле:

,

где n=54 – количество наблюдений (54 автомобиля); tg=2,006 при доверительной вероятности g=0,95 (95% результатов попадут в данный интервал); – опытная вероятность события (в частном случае w=Р); m – число благоприятных исходов события – возникновение неисправности.

Результаты расчетов заносим в таблицу 2.3

Таблица 2.3

Доверительные интервалы вероятности возникновения неисправностей

Неисправности

m

Р1

w=Р

Р2

q1

Двигателя и его систем

6

0,051

0,111

0,225

0,889

Сцепления

3

0,019

0,056

0,154

0,944

Карданной передачи и заднего моста

2

0,010

0,037

0,128

0,963

Рулевого управления

4

0,029

0,074

0,179

0,926

Подвески

4

0,029

0,074

0,179

0,926

Тормозов

3

0,019

0,056

0,154

0,944

Электрооборудования

2

0,010

0,037

0,128

0,963

Кузова

1

0,003

0,019

0,101

0,981

Из приведенных расчетов видно, что наиболее вероятно возникновение необходимости текущего ремонта двигателя, рулевого управления и подвески. Эти данные необходимо учитывать при разработке технологического процесса ТО-1, при расчете необходимости в запасных частях и т.д.

Для определения наиболее вероятного числа одновременно возникших неисправностей используют производящую функцию вида:

,

где Рi – вероятность появления i-го события (); qi – вероятность не появления i-го события ().

Производящая функция примет вид:

Перейти на страницу: 1 2