Важная информация

АВАРИЙНОСТЬ НА ДОРОГАХ РОССИИ

За прошедший год в России произошло 199 431 ДТП, что на 2,1% меньше, по сравнению с предыдущим годом. В них погибло 26 567 (-3,9%) человек, а 250 635 (-1,9%) человек получили ранения различной тяжести.

11845 (-3,9%) ДТП произошли по вине водителей, находившихся за рулем в состоянии алкогольного или наркотического опьянения. В результате этих ДТП 1 954 (-15,4%) человека погибли, а 17 280 (-4,6%) человек получили ранения.


Основные типы судов речного флота

Чем больше глубина погружения крыла, выше давление воды, тем при большей скорости судна начинается кавитация. Это еще одно важное обстоятельство, говорящее о том, что подводные крылья быстроходных судов должны быть глубокопогруженными.

При плавании без движения или при скоростях до выхода на крылья остойчивость судна на подводных крыльях обеспечи­вается как у водоизмещающих судов: восстанавливающим момен­том, возникающим в результате действия силы веса и гидростати­ческой силы поддержания. После выхода на крылья восстанавли­вающий момент создается действующими на подводные крылья гидродинамическими силами.

До выхода судна на крылья сопротивление его движению подчиняется' всем законам, установленным для водоизмещающих судов. В момент глиссирования, т. е. до окончательного выхода на крылья, судно испытывает сопротивление воды подобно глис­серу и еще сопротивление крыльев[7, стр. 113].

В отличие от ходовых качеств водоизмещающих судов, ходовые качества судна на подводных крыльях на мелководье улучша­ются. Действительно, у дна бассейна поток воды подтормажи­вается и если подводное крыло движется вблизи от дна, то ско­рость потока на нижней стороне крыла уменьшается, а давление воды увеличивается, т. е. подъемная сила растет.

К управляемости судов на подводных крыльях предъявляют особенно высокие требования. В самом деле, если бы быстроход­ному судну на подводных крыльях от момента подачи команды до изменения направления движения требовалось столько же времени, сколько водоизмещающему судну, то оно успевало бы про­ходить в нежелательном направлении большие расстояния. Кроме того, небольшие угловые отклонения от курса под действием ветра, волнения или течения вызывали бы очень резкие отклонения судна от принятой линии движения.

Управляемость судна на подводных крыльях, как и всех су­дов, обеспечивается в основном действием руля, но некоторое участие в обеспечении управляемости принимают и крылья. Несколько увеличивает устойчивость на курсе стреловидная в плане форма крыла[8, стр. 99-100].

При скорости поряд­ка 45 узлов сопротивление воздуха и воды станет при­мерно равным сопротивлению воды при скорости 12,5— 15 узлов.

Благодаря крыльям приращение скорости хода до 30 узлов (около 55 км/час) может быть достигнуто без уве­личения мощности двигателей. Выигрыш скорости сопро­вождается некоторыми потерями. В данном случае они заключаются в том, что стоимость судна на подводных крыльях повышается в пересчете на одно пассажирское место в 3—4 раза. Однако в целом, с учетом ускорения доставки примерно в 3 раза, стоимость перевозки од­ного пассажира увеличивается всего лишь на 10—15% по сравнению с обычным судном[11, стр.120].

В нашей стране в последние годы построено много та­ких судов: «Ракета», «Метеор», «Спутник», «Мир», «Комета» «Стрела» и др. Самый большой из них — «Спутник» пред­назначен для движения по магистральным рекам. Он вмещает 300 пассажиров. Его водоизмещение 4О т, мощность силовой установки 4 тыс. л. с., скорость хода 70—80 км/час. Пассажиры размещаются в трех комфор­табельных салонах, оборудованных креслами самолетного типа. При постройке корпуса использованы сплавы легких металлов, павинол и т. п. материалы. Двигатели управляются из рулевой рубки[9, стр. 88].

Ознакомимся подробнее с принципом движения судов на воз­душной подушке. Представим себе куполообразное судно. Мощный вен­тилятор, приводимый во вращение поршневым или турбореактивным двигате­лем, гонит воздух под ку­пол, который называют камерой. Давление воз­духа в камере повышается настолько, что судно от­рывается от поверхности воды и повисает на воз­душной подушке. По мере подъема судна увеличи­вается зазор между ниж­ней кромкой камеры (по пе­риметру) и водой, а вместе с этим увеличивается и количество воздуха, выте­кающего через зазор. Те­перь вентилятор должен непрерывно восполнять расход воздуха, чтобы его подъемная сила в камере оставалась равной весу судна. Вот почему высота парения судов на воздушной подушке камерной схемы невелика и составляет только 50—150 мм.[7, стр. 84].

Чтобы, опустившись на воду, судно на воздушной подушке камерной схемы не затонуло, по бортам его устанавливают лодки плавучести. При крене судна, если лодка плавучести частично погружается в воду, сила плавучести образует восстанавлива­ющий момент и обеспечивает остойчивость судна. Кроме того, для обеспечения остойчивости судна на воздушной подушке камеру делят на части продольными и поперечными переборками: если судно кренится или дифферентуется, то со стороны подъема расход воздуха увеличивается и давление в отсеке камеры падает, а с опустившейся стороны давление в отсеке камеры увеличивается. Так создается восстанавливающий момент[12, стр. 135].

Перейти на страницу: 1 2 3 4